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A Weyl geometry with a gauge-invariant, Riemannian subgeometry is used to 
geometrize the combined Einstein-Maxwell theory. A generalized Hamilton- 
Jacobi equation from particle mechanics emerges as an immediate consistency 
requirement. The time-independent, Coulomb field case is found to include at 
least lowest-order quantum effects as in wave mechanics. Possible microscopic 
entropy is identified. 

1. INTRODUCTION 

A straightforward generalization of existing Einstein-Maxwell theory 
into the gauge-invariant framework of the Weyl geometry (Weyl, 1922) is 
proposed. The broader kinematical framework of this geometry allows a 
geometric interpretation of the electromagnetic potential as well as the 
gravitational or metric field. However, the actual dynamical equations 
proposed by Weyl are not used; rather, a gauge-invariant metric tensor is 
constructed, and a Riemannian subgeometry is constructed on this. This 
subgeometry is gauge invariant, and allows an escape from the nonphysical 
effects of a pure Weyl geometry. It also allows the formulation of dynamical 
equations formally identical to those of the standard Einstein-Maxwell 
theory, but with two dimensionless constants. These equations will preclude 
the generation of further such subgeometries, leaving a dual-geometric 
description of the system, An immediate by-product of this is a scalar 
consistency relation, which the field quantities must satisfy also. This 
relation is a second-order, partial differential equation whose first-order 
term is of the form of the Hamilton-Jacobi equation of a charged particle 
in a combined gravitational and electromagnetic field. This will be identified 
as the equation of mechanics. 

lWork performed under the auspices of the U.S. Department of Energy. 
2Current address: 7-J Reler Lane, Somerset, New Jersey 08873. 
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The spherically symmetric solution to the Einstein-Maxwell equations 
is then examined. Spherical symmetry is not imposed on the new equation, 
though time independence will be assumed. Under these conditions, it 
separates into three ordinary differential equations that are further trans- 
formed into second-order linear equations. These will be seen to closely 
resemble the equations of the quantum theoretic, Coulomb-force problem. 
Indeed, the angular equations are identical. The radial equation is ap- 
proximately the same, giving the same form in the nonrelativistic limit. 

Closing sections then discuss constants, source motion, short-range 
effects, the physical identification of the new term in the mechanics equa- 
tion in terms of entropy, and the concept of information as an exact, 
microscopic variable. The concept of "particles" is discussed also. Finally, 
the theory is contrasted with Weyl's original theory,. 

2. KINEMATICS-- THE WEYL GEOMETRY, GAUGE 
INVARIANCE, AND A SUBGEOMETRY 

The geometry proposed by Hermann Weyl (1923) as a framework for a 
unified field is defined by a metric tensor, g.., g=det(gr and an 
intrinsic 4-vector, v.. Together these determine an affine connection 

F~= { v~a } +8~v~ +8~v.-g~v" (la) 

where 

(v~a}=�89176 .... - g  .... ) (lb) 

A comma before a subscript denotes the partial derivative with respect to a 
coordinate; that is,, 0e = 3/3x ~ . 

The quantity F~ is invariant under the conformal-gauge transforma- 
tion 

g~. =s(xX)g~., sq=O (2a) 

and 

tS~ =% -- �89 I),~ (2b) 

We retain the absolute value for now, though it is common to restrict s>0.  
In the central-force example to be given, s>0  is used. 
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A quantity that is invariant under (2a) and (2b) is called gauge 
invariant because (2a) corresponds to a change of units or gauge. Clearly, 

BIo  + r ,  (3) 

is also gauge invariant. This is the curvature tensor of the geometry. 
The contracted tensor 

B,,,~ = B~,~, (4) 

is gauge invariant also, and finally, 

e (5) 

is a scalar that transforms under (2a) as the inverse metric g"" does. This 
gives 

Jff=B/s (6) 

This allows us to define a gauge-invariant metric tensor 

~,~,~ =Bg~,~ (7) 

if B 4 = 0. Because this latter inequality is a gauge-invariant condition, we will 
assume for now that we can satisfy it. 

Define 

We will assume that any raising or lowering of indices, or contracting on a 
hatted quantity, is always performed by ~ ,  whereas g~ is used for 
unhatted quantities. In general, a hat (^) denotes a gatige-invariant quantity 
to be associated with ~,~. The quantifies F~ and B~,~r are not given hats, 
somewhat arbitrarily, because they predate the definition of ~ ,  and nor- 
mally are not manipulated with it. 

We define the covariant derivative using {L }  by a semicolon (;), 

whereas the covariant derivative using { L } is denoted by a double bar (1[). 
In general, these uses with hatted and unhatted quantities should be 
reasonably clear from context. 
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Next, define the gauge:mvariant Riemannian Subgeometry through its 
curvature tensor 

We also have 

(9) 

/~=~P:/~. (12) 

/~ is a true gauge in~cariant, while D transforms in the same manner as B. 
Finally, define 

e~ = v ~ -  �89 (13) 

and 

/ ~  = ~3..~ - t3,. .  (14a) 

=v~,~ -v~,~ (14b) 

We note that nothing has been said so far to prevent the formation of 
still another subgeometry using Dg~p instead of Bg~,p. This process could be 
carried on ad infinitum, provided no iteration is reached for which the new 
subgeometry has a scalar curvature of zero. This multiplicity of geometries 
would create unsatisfactory ambiguities if not eliminated. 

3. DYNAMICS-- GAUGE-INVARIANT EQUATIONS 

We now identify ~ ,  with the Einstein, gravitational metric tensor. This 
differs from Weyl (Adler et al., 1965, pp. 401-417), and causes gravitation 
to be gauge invariant. We also identify the electromagnetic field tensor 

.~  =jp., (15) 

wherej will be found to be a nontrivial dimensionless constant. 

and 

/~,,,~ - ^~ ( 1 0 )  - - -R  vet~ 

D = g"~/~,,~ (11) 
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Next, assume an action of the form 

z= f[(~-20-�89 f/~vi~v)] (- o~) I/2 d 4x (16a) 

l being a second dimensionless constant. We can rewrite this as 

I =  f[( ~-  2l) - - �89  ( -  ~ )1/2 d4 X (16b) 

Varying ~ ,  and ~3~,, and equating the variational derivatives (Adler 
et al., 1965, pp. 324-328) to zero gives 

& , - t ~ ,  = - f [  :,o:o~ + �88 (17) 

and 

p,. =0 (18) 

These, together with equations (14a) or (14b), give the Einstein-Maxwell 
theory, either with free fields or with singularities, as sources of p~,, (Adler 
et al., 1965, pp. 396-401). The use of the Riemannian subgeometry should 
bypass unphysical effects of the Weyl geometry (Adler et al., 1965, pp. 
415-417). 

To relate these more explicitly to ordinary units, first note that the 
formation of 8~, essentially causes any length measured with ~,, to be 
expressed in dimensionless units, using the scalar curvature B as a length 
standard (Weyl, 1922, p. 134). In other words, 

B = 1 natural unit- 2 (19) 

everywhere. 
At this point, we simply assume that B>0, that our ordinary lab units 

correspond to some gauge 

B = b = c o n s t > 0  (20) 

and that the usual Einstein-Maxwell theory holds for that gauge. Then for 
B=b,  assuming Gaussian units for the stress tensor (Jackson, 1962; Adler 
et al., 1965, pp. 261-280), 

k[ 1 .] 
R~,, - A g ~ ,  - 4~r F~'~F'~ + "4 g~'~F'~vF v (21) 
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where A is the cosmological constant, and k is the Einstein gravitational 
constant, 

8~rG 
k = - -  (22) 

c 4 

G is Newton's gravitational constant, and c is the speed of light. 
Now for B = b, we can show 

R~. =/~..  (23) 

SO 

and we identify 

and 

^aO ! ^ ^~P^T ~ 
4~r (24) 

a=b t  (25) 

p ~ =  ~ (  F~ (26) 

The value of j remains separately important because v~ already enters 

^ ^ p ~ t  ^ R--g R~,~ 
= gVa 

Bk~. 
D 

= m  B (28) 

R = 4 /  (27) 

But 

into F~,, and thus B, with a fixed relation to the metric tensor. Thus we need 
j to allow flexibility in the effect of its curl ( / ~ )  on ~,, through the Einstein 
equations. If we juggle v~ one place, the other will follow suit, so we cannot 
simply absorb j into v~ or/~,.  In fact, j2 becomes a dimensionless gravita- 
tional constant. 

We will defer a discussion of the value of b until later, except to note 
that the magnitudes of b and A may by comparable. This would leave l free 
to have a magnitude near unity. 

Contracting equation (17) gives 
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Thus the Riemannian quantity D and the Weyl quantity B always have 
the ratio 4l. Because this is a constant, the dynamics have forced D always 
to be proportional to B in the same fixed ratio. A simple check,then shows 

^ 

that Dg~ generates exactly the same R~v as the quantity Bg~,, does. The 
infinite chain of subgeometries terminates after only one iteration. This is 
equivalent to requiring that our standard of length, B, be essentially unique. 
But equation (27) gives us this result by requiting D and B to be a consistent 
pair of standards. 

Next, by direct calculation we can verify that 

(29) 

a relation of the same form as equation (la), but using hatted quantities. 
Substituting this into equation (3) and performing a rather lengthy simplifi- 
cation, then contracting as in equation (4), and finally multiplying by ~ "  
and contracting, we get 

(30) 

But 

gva B 
~,~'~B.,~ = --ff- B.,~ - ~ --1 (31) 

Then equation (27) implies immediately that 

1 - 4 1  
t3~ +~3~3~ - 6 (32) 

This is a necessary relation among our various quantities if they are to 
fit consistently into the framework we have used. It is not simply a gauge 
condition, because it contains only gauge-invariant quantities. 

Written out, equation (32) is 

1 (_~)l/2 ( (--g)l/2g~v[vp--( �89 ),v] ),~ 

+~,,[v~ _ ( 1 B),t,] [v _ (  1 --4l ~ in  ~ lnB) , , ] - -  1 6 (33a) 

It is a second-order, partial differential equation for B, given v. and ~,,. 
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Note that this equation actually completes the definition of the Weyl 
geometry. Equations (17), (18), and (14b) are actually solved for v, (in any 
convenient gauge) and ~ , ,  not g~,. The above then ties the gauge of B to 
that of v~, and gives B. This allows g~, to be calculated finally. Alternatively, 
one may choose B= b from the beginning. Then one must still solve an 
equation of the form of equation (33a) to complete the determination of v~ 
in that gauge. Either way, equation (33a) is necessary. 

If we have solved equation (33a), we may then write equation (32) 
exactly in terms of first-order equations if we can find a function ~ such 
that 

1/2 #v (lnO),~(--g) g [%-(�89189 

(33b) 

Then q, is a gauge transformation that transforms (33a) into 

~.ln/~),~,][g _ ( l l n ~ ) , . ] _  1--416 (33c) 

in the new gauge. This is seen by expanding all the hatted quantities in (33a) 
into their Weyl components. One may then treat the first term as a product 
of B and the remaining quantities. By applying the product rule, we move 
the term generated by differentiating B into the ~3~3~ term. Equation (33b) 
then easily gives equation (33c). 

Letting 

S = �89 B (34) 

we can write equation (33a) as 

~,~'(v~-S ~)(%-S~)= 1 - 4 l  
' ' 6 

(35) 

If 1< 1/4, then in a region in which 

1 - 4 l  
(36) 

we have a quantity, S, which behaves like Hamilton's principle function for 
a charged particle in a combined electromagnetic and gravitational field 
(Goldstein, 1959; Landau and Lifshitz, 1962, pp. 148, 285). Of course these 
are all still field quantities. We have not explicitly introduced any particles, 
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which makes this "particlelike" behavior all the more interesting. Accord- 
ingly, equation (32) is identified as the equation of mechanics. It should 
exhibit such "particlelike" behavior in regions for which equation (36) is 
true, and possibly also in regions in which equation (36) may not be true, 
but in which 

13~,, -~ const < 1 - 4 l  (37) 
6 

Also, we see immediately that, given a v, and ~ ,  a determination of B 
will be a problem at least as complex as the solution of the motion of a 
mechanical system, and, choosing a gauge such that B=b, is equally 
nontrivial, because it generates an equivalent problem. This is reminiscent 
of the situation in quantum theory where either the operators are stationary 
and the the state vector moves, or vice versa. Mixed cases are possible also. 
The parallel with quantum theory now will be seen to be even more precise 
in the case of a central force, to which we now turn. 

4. THE CENTRALLY SYMMETRIC FIELD 

The centrally symmetric, time-independent solution of the Einstein- 
Maxwell equations (Adler et al., 1965, pp. 396-401) is immediately applica- 
ble to equations (17), (18), and (14). It yields the Reissner-N6rdstrom 
solution for a Coulomb field, charged point mass. This is 

g00 =eV, gl l  = --e -v, g22 = - r 2  

g33 = - - r 2  sin20, g~v = 0 ,  /*ear (38a) 

and 

q 
% -  j j r '  vi=O' i>>'l (38b) 

Also, 

q2 l 2 e ~ - - 1 - 2 m  + _ (39) 
r 2 r  2 -3 r 

and 8, q, and m axe constants. The choice of this form for % effectively 
chooses the gauge, so we must regard equation (33a) as determining B. 
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Let 

S = �89 B (40) 

We can absorb the 8/j into S if S is a function of time (x~ but we will 
assume time independence in what follows. Thus we leave the 8/j where it 
is. This is equivalent to omitting 8/j and assuming 

8 
S,0 j (41) 

This is the same procedure one uses in Hamilton-Jacobi theory (Goldstein, 
1959) to separate the time, so 8/j plays the role of a total "energy." 

A straightforward calculation now gives 

(r2e'S,l) l e-" 2 v 2 

+ ~ r 2  (q+Sr )  - e  (S l )  /.2 

1 ! _ 4 ,  
+r '~ sin0 ' sin2-----O - 6 

(41) 

from equation (32). We have assumed time independence, but not spherical 
symmetry for S. There seems to be no justification for forcing spherical 
symmetry on S, because it cancels from both ft,. and ~ . ,  leaving them 
spherically symmetric. 

Equation (42)now neatly separates, assuming as in Hamilton-Jacobi 
theory, 

S= U(r)+ T(O) + A ( , )  (43) 

This gives 

A"-(A')Z=n~ (44) 

T"q-T'cotO-(T')2+ n---~ =nz(n z + 1) 
sin20 

(45) 

and 

(rZe'U')'-rZev(U')Z+ ~.f (q+Sr)Z+nE(n2 + I)= I-~64/r2 (46) 
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The quantities n I and n 2 form separation constants whose values we 
anticipate to be integral. To see this, note that all of the above equations are 
Ricatti equations (Sokolnikoff and Redheffer, 1966). They become linear 
under 

This gives 

and 

f '=  --h'/h (47) 

A'= - y ' / y  (48a) 

y"+n2y=O (48b) 

T'= - P ' / P  (49a) 

[ P'+cotOP'+ n 2 ( n 2 + l  ) -  P=-0 (49b) 

U '= - u ' / u  (50a) 

[ ~  e -v 2 1 (r2e~u')'+ r 2 - - u ( q + 3 r  ) - - n 2 ( n e + l  ) u = 0  (50b) 

Equations (48b) and (49b) are precisely the angular equations from the 
central-force problem in quantum theory. Provided we require y and P to be 
single valued and well behaved they give n I and n 2 as integers: 

and 

(51) 

--n2<~nl<~n2 (52) 

But clearly y must be single valued, in contrast to Hamil ton-Jacobi  theory. 
Thus n 1 is integral to ensure that our fields and gauge are single-valued 
functions of q~. The requirements on P are not so obvious, and to try to see 
them we note 

S = U +  T + A  

-= - l n l u l - l n l P l - l n l y l  

1 1 
= "~hl uap2y 2 (53) 



242 Rankin 

This gives 

B=(uey) (54) 

Conveniently enough, this gives B >  0 provided u, P, and y are never 
infinite. On the other hand, B will be infinite for some values of the 
coordinates; that is, wherever any of the three functions has a zero. If we 
require B to always be finite and nonzero, the only allowed eigenvalues are 
n I = 0  and n 2 =0. 

However, we can note a correspondence between the regions for which 
B would be infinite and the regions in quantum theory for which q~*+=0, 
the regions where a particle is never found. Here, we have u2P2y 2 =0  
instead, and we have singular surfaces of B instead of vanishing probabili- 
ties. By equation (7), the Weyl metric vanishes on these surfaces. We will 
proceed at this time with equations (51) and (52). 

Now, to discuss the radial equation, equation (50b), we need to 
complete the transformation to ordinary lab units. To do this, let the old 
coordinates be barred and the new ones be unbarred. Then let 

r = ? / ~  (55a) 

and 

x~ = 2 ~  (55b) 

Then note that we have 

dg 2 =e~(dff~ -'(d?)2-f2(dO)2-f2sin20(d~) 2 (56) 

For the new coordinates, 

dg 2 =b[e~(dx~ (57) 

where 

2m q2 bl r2 (58) 
e ~ = l -  f~r -~ 2br 2 3 

This actually achieves the gauge B = b explicitly. It gives for equation (50b), 

(r2eVu')'+ b(1-4l)  r 2 -  ( q + ~ r ) - n 2 ( n 2 + l  ) u=O (59) 
6 7 
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In regions in which 

e ~ -~1 (60) 

this gives a form similar to the relativistic SchrOdinger, radial equation 
(Schiff, 1949), 

1 2 ] (r2u,) ,+ b ( l~41 ) r2  ).~ (q+~/b3r) - n 2 ( n  2 + ] )  u---0 (61) 

Thus, e ~ appears as a general relativistic correction on the radial equation 
for very small r, and very large r. 

For very small r, 

q2 
e ~ 1 -  2m + _ _  (62) 

fb r 2br2 

e ~ - 1 - ~ r  2 (63) 

whereas for very large r, 

5. THE CONSTANTS AND THEIR VALUES 

Equation (61) resembles the relativistic Schr6dinger, radial equation, 
but appears to have two signs reversed. Assuming l<  1/4, we see that the 
first and second terms in the bracket enter with reversed signs. Nevertheless, 
it gives the correct, nonrelativistic, radial form as a limit. 

T o  see this, consider that equation (61) can be written (Schiff, 1949) 

; ] [__ 1 d ]u=-b + u (64) r2d)+n2(n2 +1) q 1 - 4 l  
7-~r ( r2 j}/'br 6 

Define 

Assume 

j j ( - -  (65) 
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and 

Then equation (64) becomes 

I lug- r 2 J j ~  

With a few immediately suggested identifications, this has precisely the form 
of the radial equation for the Schr•dinger treatment of the nonrelativistic, 
one-electron atom (Schiff, 1949). 

We tentatively identify 

J h 2 

and 

2~ fbq (~ -~ )  ' /2-2rn'Ze2 (70) 

Y h ~ 

where e is the magnitude of the electronic charge in Gaussian units, m e is 
the electronic mass, E'  is the Schr~)dinger energy, Z is the atomic number, 
and h is Planck's constant over 2~r. The form of the Reissner-N0rdstrom 
metric 3 suggests the further identification of 

q2 _ G(Ze) 2 (71) 
2b c 4 

These give 

q=(EbG) l/2Ze (72) 
c 2 

8'-- (2G)1/------~2 E'  (73) 
e c  2 

3See Adler et al., 1965, p. 401 (but use Gaussian units). 
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and 

j=-h2(2G)l/2 b (--164l)'/2 (74) 
e c  2 m e 

Note that neither l nor b has yet received any suggested values. 

5.1. The Gauge Constant. The gauge constant relates the natural marker 
system defined by the scalar B to our ordinary lab units. Note that b has 
appeared in analogy to the electronic mass in Schr6dinger theory. In such a 
position it would affect the wavelengths of the spectral times that one may 
use for lab standards. Indeed, equation (74) gives 

b~m e (75) 

A closer comparison with relativistic Schr0dinger theory suggests 

6 m~e c2 (76) 
b =  1 -4~  h ~  

Thus, it appears possible that b may easily be correlated directly with 
laboratory units if I is known or 1411<< 1. 

Further speculation on this suggests the possibility that structures such 
as muonic atoms may be associated with different determinations of b. This 
would be somewhat similar to the association of different Bohr radii with 
different atomic energy levels (Margenau and Murphy, 1962, p. 367). In 
other words, muonic atoms would somehow represent excited gauge states. 
This would seem to require that the theory predict some eigenvalue spec- 
trum for b when equation (59) or its counterpart in a given solution is 
considered exactly. This has not been demonstrated. It would also require 
that such different determinations of b can be handled consistently. This 
would require that b could be treated as a system constant such as total 
energy, rather than a universal constant such as (presumably) the fine 
structure constant. This also has not been explored. 

If 1=~ 0 and b is not a universal constant, neither is A. 

5.2. The Remaining Constants. Note that the quantity Ze actually 
canceled from j. The e in the denominator is associated directly with the 
constant, and illustrates how only one charged singularity might appear 
mathematically to be two interacting charges. Closer comparison to relativ- 
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istic quantum theory suggests 

q Z e2 ~e 2 -j=- 

and not just e. We also have then for j,  the more accurate expression 

(77) 

The constant j depends explicitly on the value of k in equation (22). 
Note that k only enters the metric through the electromagnetic term. 
Because the 2m/r  term is separately adjusted to the Newtonian limit, the 
usual arguments concerning the value of k may be less valid (Adler et al., 
1965, pp. 173, 277-280, 400). Furthermore, equation (77) suggests that the 
product Gm2e is constant, suggesting that G possibly may be smaller for 
muons in muonic atoms or for similar systems. 

The dimensionless constant 

1 D  l=  ~. ~- (78) 

As the ratio of these two scalar curvatures, Riemannian over Weyl, it 
represents the correlation between two possible standards of length. In other 
words, 

Dg~,p =41 
Bg~ 

The two possible forms for the gauge-invariant metric always have this fixed 
ratio, like feet and meters. Its value must be constant to keep the system 
consistent. 

As such, l represents a very fundamental property of the entire dual- 
geometric model. No value is yet proposed, but the two values 

and 

l = 1 / 4  (79) 

1=o (8o) 

would seem to be the least interesting choices. Both give trivial limits for the 
dual standard of length in which the duality is somewhat masked. But it 
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seems plausible that it is the overall duafity that generates any semblance of 
quantum equations in this framework. In other words, we still have a 
dualistic, complementary description of the world. Now it is through dual 
geometries. Furthermore, if l is an extreme number such as 10 -80, it might 
tend to naturally divide the Weyl and Riemannian geometries into a 
geometry of microcosm and a geometry of macroscosm. Additionally equa- 
tion (79) would lead to singular values in many of the preceding equations. 

As for m, its value should simply be (Adler et al., 1965, p. 400) 

2GM(b 
m-- c2 (81) 

where M is the singularity mass in ordinary units. Note that the r will 
cancel in (58). We do not need it for e ~. 

The constant 8 presumably has eigenvalues determined directly from 
the radial equation. We identified 8/j with "energy" in equations (41), (65), 
and (73). It is worthwhile noting that negative "energy" works as well by 
reversing the sign of ~/j in equations (38b) and (41), and corresponding 
signs in succeeding equations. This leads to sign reversals in equations (70) 
and (73). It would eventually reverse the sign of j ,  though no t j  2, of course. 

6. DISCUSSION 

6.1. Source Motion. The consistency relation, equation (32), has so fax 
been identified in this paper as the mechanical equation. This is based on 
immediate similarities to forms from classical and quantum mechanics; 
however, we also have the intuitive feeling that mechanics in physics should 
be relevant to the motion of field sources, especially if they are singularities. 
Because the motions described in equation (32) axe those of fields, there is 
by no means yet any direct link with the motions of the field sources. 
Equation (32) represents "mechanics" by analogy. Its behavior is mechani- 
cal; that is, it contains quantities that might be perceived as mechanical 
simply because they behave as we expect mechanical systems to behave. 
This results from the identities, equations (30) and (31), and the dynamical 
condition, equation (27). Thus it fulfills most of Eddington's criteria for 
identification of quantities and laws (Eddington, 1965, p. 222). 

But then, how do the field sources actually move? This question 
remains relevant. There seem to be several possible approaches to an 
answer. 

If we retain singular sources, then the works of Infeld, Rohrlich, Dirac, 
Einstein, and many others, (Infeld and Plebanski, 1960; Rohrlich, 1965) all 
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suggest that singularities must basically move according to the accepted 
classical laws (using the subgeometry). These seem to follow from the 
Einstein equations and conservation laws. Such classical motions would 
raise stability questions for multisingularity systems. The same problems 
arise in the Bohr theory of the atom. Radiation damping may cause system 
decay. Possible solutions might include negative masses (Synge, 1960) or use 
of mixtures of advanced and retarded fields to inhibit radiation (Infeld and 
Wallace, 1940). Or, stable, ground state systems might appear as only one 
singularity, but excited states might involve more than one. 

Alternatively, to directly correlate equation (32) to singularity motion, 
it would seem necessary to demonstrate the consistency of any such correla- 
tion with the field equations. This has not been done in this paper. Indeed, 
the above-mentioned works suggest that it might be impossible because of 
the second-order term in equation (32). This would not seem to exclude 
some demonstration of an average or statistical correlation between equa- 
tion (32) and singularity motion. Furthermore, behavior restrictions on B, 
and the nonlinearity of equation (32) may produce new restrictions on 
singularity motion. 

Then what of nonsingular sources? One possibility is that of Wheeler's 
"wormholes." (Adler et al., 1975, pp. 507-532). One requires the free-field 
Maxwell equations to be true everywhere, and endows space-time with novel 
topologies. 

Another possibility is one previously suggested by the author (Rankin, 
1971). It assumes that electromagnetic sources move microscopically so that 
the total Lorentz force density vanishes at each point in space-time. An 
example of such a system is given by the action integral 

z= f {( l -UZ)-kj2[ p..p." "~(l~lal-let)fft~v*pl~v]}(--g)l/2 d4x (82) 

This is considered to be a functional of ~ ,  t3,, and t2~. The quantity 

1 
*p~" = e"~~ (83) 

is the dual of/~,.  One disadvantage is the lack of an immediate geometric 
identification for fi~. The system also appears considerably more complex 
mathematically than the theory with singular sources. 

In view of all of the above, the correlation between equation (32) and 
our more intuitive notions of mechanics remains incomplete. The potential 
for two separate concepts of mechanics is present. One would involve 
equation (32) and the other would refer directly to source motion. Such a 



Dual Geometric Field Theory 249 

dualism should be self-consistent because different quantifies are involved 
in the separate concepts. However, a true understanding of time-dependent 
phenomena will require a detailed correlation of concepts. Questions about 
electromagnetic radiation during "energy" transitions in equation (32) pro- 
vide an example. It would seem that such questions may be answered from 
the formalism, at least in principle. If so, links between the two "mechanics" 
may not have to be supplied by postulates. 

6.2. Short-Range Forces and Other Radial Effects. So far, the results of 
equation (32) can be seen to be analogous to nonrelativistic quantum theory 
in certain limits. Any immediate short-range effects obviously must involve 
the complete, general relativistic structure. Without attempting such detailed 
analysis, we may still make some rough observations. 

Using the spherically symmetric case as a guide, we see that metrical 
corrections will enter the radial equation twice. We have from equations 
(61) and (59), 

q--, qe -~/2 (84a) 

and 

~ 8e - ~/2 (84b) 

as corrections to the potential or Coulomb force terms. But we also see 

r 2 ~ r 2e" (84c) 

in the derivative term. 
Using accepted nucleon and nuclear parameters (Evans, 1965), equa- 

tions (62), (72), and (81) would indicate the well-known result that general 
relativistic corrections to atomic and nuclear problems become significant 
for very small r values, on the order of 10-34 cm. The electrical term in the 
metric becomes significant first, because the mass term approaches unity 
only for r of the order of 10-53 cm. The radial marker r is not actually the 
radius (Landau and Lifshitz, 1962, pp. 272-274), which is instead given by 

= [ r e  -~/2 dr (85) P 
"o 

provided there is no Schwaa-zchild singularity in the integration range. For 
nuclear and subnuclear systems there is no singularity (Adler et al., 1965, p. 
401) and differences between p and r are negligible for r>10  -32 era. 
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Thus general relativistic effects would not appear responsible for any 
short-range forces at the usual nuclear and nucleon range of about 10-13 
cm. For truly singular particles, however, corrections would be expected to 
become quite important at the much smaller radii indicated above. Their 
primary effects might conceivably be the modifications introduced into the 
boundary value problem at a radius of zero or at a singular surface, if one 
exists. 

The outer r limit also should place conditions on solutions. It may be 
interesting to see if either limit, or both together, require sufficient restric- 
tions to force eigenvalues on more general source parameters such as q or m, 
in addition to & 

One other possible effect may be of interest for short-range and 
exchange reactions in this model. If we ignore general relativity and simply 
examine the approximate form of equation (32) for two charged singulari- 
ties, we see that it may be similar to the hydrogen, molecular ion problem in 
quantum mechanics (Margenau and Murphy, 1962, pp. 385-387). Thus the 
two-singularity problem may appear like a quantum, three-body problem. 
This may introduce some exchange reaction effects in a basic way. 

6.3. Entropy and Information. The quantity 

S,,, = - �89  (86) 

at any point of space-time may be compared to the information capacity of 
a system of N states (Raisbeck, 1964) given by 

logzN (87) 

We have seen that ( l /B )  ~/2 is analogous to the quantum state function. 
Furthermore, the solution of the problem of system motion allows us to set 

(88) 

o r  

Sm=O (89) 

By solving the problem, we have "extracted" the information. This suggests 
we define (86) as the "mechanical information field." It is not gauge 
invariant, however, and may be formally zeroed even without solving for the 
system motion. 
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The gauge-invariant generalization of this concept seems to be the 
current 

~3~ = v. + (S,.,)#. (90) 

But Tolman (1962) states the general relativistic form of the second law of 
thermodynamics as 

8Qo (91) 
W 

where S" is the entropy vector. We can rewrite equation (91) in our 
subgeometry as 

8Qo (92) [(__~)l/2~ls.],p~xl~x2~x3f~X 0 ~ W 

This, with equations (86) and (87), suggests that we tentatively identify 

t3~ = entropy vector (93) 

Then equation (32) gives 

[(_~,)l/2y,l, Sx,~x2~x38xO=(_~)l/Z ( 1--416 ~P'~la) ~XI~X2~X3~XO 

(94) 

as a possible microscopic statement of the second law of thermodynamics. 
In general, the current ~3 ~ would not represent a conserved quantity unless 
behavior is purely classical. This occurs when 

1-4 l  
~3"~3~ -- 6 (95) 

If these simple considerations are verified, they may show a micro- 
scopic tendency toward irreversibility. 

6.4. On Particles. Except for the pure singularity at r=0,  there seem to 
be no "particles" in the usual sense in the solution used. However, the 
agreement of equation form with quantum theory suggests that our model 
may be dealing with the same entities as wave mechanics. This suggests that 
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either (1) we are dealing with totally ionized and isolated cores, or (2) 
individual particles lose their identity in the atom and the nucleus, and only 
the total charge and mass have the usual meaning. 

The difficulty with (2) is that it would presumably require truly neutral 
systems, such as complete atoms, to have q= 0  and m#0 .  These would 
contain Schwarzchild singularities. 

Although such solutions may be found, any parallel between equation 
(68) and conventional atomic physics would be for q:~0. This suggests that 
the electronic wave functions are more a property of the central field than of 
orbiting particles. This seems analogous to the one-body, central-field 
problem in celestial mechanics. In that instance, the central-field prede- 
termines the geometric geodesics available for satellites. The mutual interac- 
tions of the satellites, and the satellite fields are ignored in such a treatment. 

This suggests that more general solutions may show genuine electronic 
charge distributions away from r--0. However, one may believe that all 
electromagnetic sources are true singularities. If additional particles must 
appear as such additional singularities, they may present difficulties for the 
mathematical techniques of general relativity. But, nonsingular sources 
require a broader formalism (Rankin, 1971) because of equation (t8). 

The absence of dipole magnetic fields on the core is another limitation. 
Presumably a spinning, singular source can give some relief. The use of the 
Reissner-N/Srdstrom metric should have excluded such systems from our 
solution at the outset. However, some adaptation of a Kerr-Newman 
solution (Adler et al., 1975, Chapters 7 and 15) should alleviate this. 

One promising feature of the model pertains directly to the Reissner- 
Ntrdstrom metric. As Weyl notes, there are no renormalization prob- 
lems like those that plague special relativistic point-charge theories 
(Weyl, 1922, pp. 260-273). The mass is simply m. 

Photonlike effects are not yet evident in this model. Some form of 
time-dependent solution may be required to verify their presence, or ab- 
sence, in radiation emission, absorption, or propagation. However, note that 
equation (32) continues to apply, even to free radiation fields in the absence 
of sources. 

7. CONTRAST WITH WEYL'S THEORY 

Some closing comparisons with the original Weyl theory may now be of 
interest. Adapting Eddington's analysis (Eddington, 1965, pp. 206-212) to 
the notation of this paper gives Weyl's equations as 

B = b = c o n s t  (96a) 
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1 b j2  o 1 o~ 
R~-~g~,~R +-~g~,~-- b ( PI'"P ~ +-4 g~'~p''~p )-6(vj,%--~g~,~vl '~v,~ ) 

(97a) 

6b 
. . . .  v ~ (98a) P;~ - j2 

p~,, =%,~ -vs,~ (99a) 

v;~u =0 (100a) 

are 
By contrast, the equations of this paper written in the constant gauge 

B=b----const (96b) 

R~,~ - ~g~R+blg~,~ - - -ff p~,,,p~ + ~g~,~po,~p (97b) 

p~f =0 (98b) 

p~ =v~,~ -v~,~ (99b) 

and 

b ( 1 - 4 l )  
v~j, +v%~, - 6 (100b) 

Both sets have purposely been written in terms of the original, unhatted 
variables using the unhatted Christoffel symbols for the covariant deriva- 
tives. 

The greatest difference is clearly between equations (98a) and (98b). 
Weyl has continuous sources present everywhere the potential is nonzero. 
Equation (98b) represents electromagnetic fields with singularities as sources. 
Because the presence, or absence, of sources is a gauge-invariant condition, 
a clear distinction is established. Beyond that, equation (97b) is the familiar 
Einstein equation with only the standard, electromagnetic stress tensor on 
the right side. Equation (97a) contains additional stress terms, and also 
seems to indicate a definite I value of 1/4. Finally, Weyl's constant gauge 
corresponds to an electromagnetic Lorentz gauge, equation (100a). Equation 
(100b), as seen earlier, represents a considerably more complicated condi- 
tion, leading to forms familiar from mechanics in certain limits. Its decep- 
tively simple appearance here as a gauge condition masks those results. On 
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the other hand, this form provides evidence that the addition of equation 
(32) to the other field equations does not overdetermine the system mathe- 
matically. 

The two theories will coincide for the special case of 

l= 1/4 (101) 

and 

v ~ =0 (102) 

Finally, we can put the original Weyl theory into an action principle of 
the form used in this paper as 

Iw= f[(l~-l)-�89 (103) 

Treating this as a functional of ~ and t3~, and using equations (30) and 
(31), then gives equations (96a)-(100a) for the gauge B = b. We also find 

/~,= 1 -- 6 t3.t3 ~ (104) 

Because this is not generally constant, more than one subgeometry can 
be generated by self-gauging against scalar curvatures such as B and D. This 
does not seem serious mathematically. However, it raises questions concern- 
ing uniqueness of the standards of length obtained by such self-gauging. 

From a physical viewpoint, such uniqueness, as expressed by equation 
(27), might be required as a postulate. That would effectively reduce 
equation (32) itself to a postulate. 

Also, equation (104) implies 

t3~'lj~, =0  (105) 

This equation would not show the similarities to particle mechanics found in 
equation (32). It would also make it impossible to interpret ~3. in terms of 
entropy because it implies strict conservation, a property not shared with 
entropy. 

8. CONCLUSIONS 

A gauge-invariant form of the Einstein-Maxwell theory has been 
derived. The model has been imbedded in a self-gauging, Weyl geometry 
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with a Riemannian subgeometry. This has given an additional consistency 
relation resembling an equation from particle mechanics. For central sym- 
metry, it has led, in the nonrelativistic limit, to forms familiar from 
quantum theory. Quantization has resulted naturally from this consistency 
relation plus boundary conditions and restrictions on behavior of the Weyl 
scalar curvature. The nonvanishing of this curvature has been the primary 
condition. Both the SchrOdinger wave function and the thermodynamic 
entropy vector have been suggested as having geometric interpretations in 
this model. The original Weyl theory has also been framed in the notation 
of this paper. It has been seen to differ with the theory of this paper in 
several ways. 

Several other points have been discussed. Among these have been 
source motion, short-range effects, and some possible implications for 
particle theory. Major questions concerning these areas have remained 
unanswered. These included correlation between source motion and the 
"mechanics" of the consistency relation, and the detailed effect of general 
relativity on eigenvalue spectra generated by the consistency relation. Solu- 
tions with spin (Kerr-Newman) have not been examined. Possible portrayal 
of some atomic and particle phenomena as "excited" gauge states has been 
suggested, but not demonstrated. The possibility that "third body" exchange 
effects may occur naturally for two bodies in this theory has been men- 
tioned. 

9. NOTATION 

Other than as noted in the paper's body, the following apply: 
1. Coordinates are numbered from 0 to 3, with x ~ = c t  and x 1, x 2, and 

x3 as space coordinates. 
2. The metric tensor signature is + - - - 
3. All electromagnetic potentials are correlated with flat space-time 

forms by 

A~, =(@, - A )  

whereas the field tensors are defined by 

F~v =A,,~, -At,,,, 

This is opposite that of many references. 
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